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Abstract

Humans use an internal model to predict and navigate through a series of decisions in reinforcement learning (RL)
tasks, referred to as planning. Studies show that planning predicts performance in such tasks, but they only provide
a partial description because they do not separate local deliberation (i.e., online planning) from using plans made
ahead of time (i.e., offline planning). To address this gap, we introduce a variant of the canonical two-stage task (TST),
called the multinomial TST, that discourages planning beforehand by increasing state-space complexity (SSC). Here, we
report behavioral results from three versions of multinomial TST with increasing SSC, in addition to the canonical TST
(total N = 418). Consistent with the hypothesis that increasing SSC would lead to an increase in online planning,
we found that increasing SSC induced longer response time (RT) during first-stage (but not second-stage) choices. We
next decomposed RT into separable components of pre-trial and on-demand evaluation by fitting a novel variant of a
reinforcement learning diffusion decision model (RLDDM). Model fits revealed that first-stage drift rate and starting
point both showed influence of model-based values, but that, as SSC increased, this influence was stronger in drift rate
and weaker in starting point. Further, we used a timeseries analysis to observe that the model-based contribution to
starting point and drift rate were negatively correlated within each subject, suggesting that experience within each task,
as well as task complexity, mediates the relative contribution of online and offline planning. Taken together, these results
suggest that while planning without decision-time deliberation (offline planning) suffices for tasks with low SSC, online
planning becomes more necessary with increasing SSC, and that our task and model could be a framework for further
investigation of human online planning.
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1 Introduction

Planning is one of the most fundamental functions for not only natural but also artificial agents’ learning and decision-
making. In the realm of reinforcement learning (RL), planning refers to deciding with internal models - a transition
function and a reward function - of the environment, thereby being interchangeably referred to as model-based (MB)
RL. Utilizing the knowledge of the model to look forward avails efficiency and flexibility of making decisions but
comes at a computational cost. Model-free (MF) RL could be seen as a system that is opposite to planning in that it
is computationally cheap but inflexible to adapting changes.

MB and MF systems have been found to complement each other in RL. The standard task for measuring this relationship
is the two-stage task (TST) that consists of two consecutive decisions, where first-stage decisions stochastically lead to
the second-stage decisions [1, 2]. Since the reward is given in the second-stage decision, the best decision to take in
the first stage involves using the information of the second stage - in other words, the model. In this framework, a
person’s tendency to plan can be captured into a parameter w that directly weighs the tendency to use MB vs. MF value,
defined by the following formula, Q = wQMB + (1 − w)QMF , where w = [0, 1]. Here, MB Q-values (QMB) are derived
by multiplying the transition probability and second-stage values, and MF Q-values (QMF ) are updated via temporal
difference (TD) learning upon direct experience. However, a distinction left uninterrogated by this approach is whether
plans are constructed offline – that is, prior to the trial start – or online, after the presentation of options in the moment.

(a) Canonical TST (SSC=2). (b) Multinomial TST (SSC 3).

(c) Time course of one trial.

Figure 1: Experimental paradigm. (Figures 1a-1b) Each experiment consists of 300 trials and has 5 catch trials at random
sequence. (Figure 1a) Experimental design of the canonical TST (equivalent to SSC-2). Note that the same first-stage state
appeared on every trial, which allows for precomputation of plans in the intertrial interval (ITI). (Figure 1b) Experimental
design of our proposed multinomial TST. The number of SSC corresponds to the number of rockets in the 1st stage,
where each rocket mainly leads to its associated 2nd stage (planet). Therefore, each 1st-stage state varies according to the
combination of the rockets. (Figure 1c) Temporal order of TST. Both the first and second stage decisions have a 2-second
response window, followed by a feedback phase of 1 second. ITI lasted for 2 seconds with a fixation cross.

This distinction is materially relevant in multiple domains. Recently, it has been shown that artificial MB RL agents rely
heavily on offline planning vs. online planning, likely because they can benefit from very large numbers of training
examples that can be acquired without direct experience [4]. However, it remains an open question the degree to which
humans can similarly eschew online planning, given that they tend to make decisions based on fewer experiences. Eye-
and mouse-tracking studies using TST suggest that subjects plan before the trial onset [5, 6], thereby making the direct
comparison between online vs. offline planning elusive within the TST paradigm. Here, we propose a novel variant of the
TST, the multinomial TST, to delineate behavioral patterns of online planning by time-locking the availability of decision-
relevant information to the first-stage stimulus onset [3]. This is achieved by increasing the number of possible first-stage
options, and selecting combinations of them randomly at each trial, thereby making it difficult for agents to predict
and plan the first-stage decisions beforehand. We increase the state-space complexity (SSC) in three levels (3, 4, and 5
first-stage options; Figure 1b), and compare it with the canonical TST which has 2 first-stage options (Figure 1a). Like
the original TST, two options are presented on first- and second-stage decisions and the first-stage option stochastically
leads to the second-stage state associated with the unchosen first-stage option. We recruited 110 participants between
age 18-40 each for every variant - 2-, 3-, 4-, and 5-SSC tasks - via Amazon Mechanical Turk. We excluded 8, 4, 5, and 5
subjects from each experiment, due to one of the following criteria: responding with the same key on more than 95% of
the trials, responding implausibly fast (RT below 150 ms) on more than 10% of the trials [9], choosing more than 90% to
either option, failing to respond within the response window on more than 20% of the trials, below chance-level model
fit, pressing certain button or choosing certain option consecutively for more than 10% of the trials, responding with RT
of 0 for more than 5 trials (this indicates that the button was pressed before the onset of the trial), and scored less than 2
out of 5 catch trials. We hypothesized that increasing SSC will evoke online planning; behaviorally, we expected this to
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be reflected in an increase in participants’ response times (RT) in the first-stage decision, since precomputing the plans
before trial onset would be more difficult, and an increased dependency in using trial-specific MB-information on each
decision. Our main measures of interest to compare behavioral patterns across SSC come from two models - w from the
choice model used by previous TST studies [1, 2] and the non-decision time (NDT; t), drift rate (v), and starting-point
bias (z) parameters in a reinforcement learning diffusion decision model (RLDDM; [8]), here extended to incorporate
the multiple value timeseries (MB and MF) available in the TST. Specifically, we measure online planning with the MB
evidence accumulation rate (vMB), since the drift rate stands for evidence accumulated at each given timepoint. In
contrast, we hypothesize that the MB evidence already accumulated before the start of the trial (zMB) represents offline
planning.

2 Results

First, we tested the hypothesis that complex environments recruit online decision evaluation by analyzing the response
time of first-stage states as a function of SSC (Figure 2). The first-stage RT indeed increased as a function of SSC; a one-
way ANOVA yielded a significant difference between SSC (F(3,412) = 26, p < .001), and a post-hoc t-test revealed that
the RT of SSC-2 are significantly lower than other conditions (SSC-2 vs. SSC-3: t(203) = −6.69, p < .001, SSC-2 vs. SSC-4:
t(201) = −6.17, p < .001, SSC-2 vs. SSC-5: t(205) = −9.01, p < .001), and 1st-stage RT in SSC-5 were also significantly
slower than other conditions (SSC-3 vs. SSC-5: t(210) = −2.66, p = .009, SSC-4 vs. SSC-5: t(208) = −2.98, p = .003; Figure
2a). It is also notable that neither the mean score (Figure 2c) nor mean w (Figure 2d) are different across conditions (all
p > 0.3). This suggests that the differences in first-stage RT cannot be explained by the difficulty of the task per se or the
degree of model use in each task. Further evidence in favor of this point is that second-stage RT, which also involves
binary choice but not planning into the future, was invariant among conditions (F(3,412) = 1.86, p > .13; Figure 2b).

(a) Mean first-stage RT (b) Mean second-stage RT (c) Mean score (d) Mean w

Figure 2: Behavioral analyses across conditions. Error bars indicate standard error. Significant results of pairwise t-tests
are indicated with asterisks: ∗ = p < .05, ∗∗ = p < .01, ∗ ∗ ∗ = p < .001) (a-b) Mean first- and second-stage RT across
different SSC. Prior to statistical tests such as one-way ANOVA and t-tests, each participant’s mean RTs for 1st- and
2nd-stage decisions were log-transformed and normalized. (a) First-stage RT of SSC-2 was significantly shorter than the
rest conditions, while the opposite was true for SSC-5. There was no significant difference between 1st-stage RT of SSC-3
and SSC-4 (t(206) = .38, p > .7). (b-d) A one-way ANOVA indicated no significant difference between groups in mean
second-stage RT, mean score, and mean w across groups (all p > .13).

Next, we analyzed the data using an RLDDM to identify the within-trial pattern of planning. Our model inherited
features of the original RLDDM [8], but augmented to model the TST. Specifically, in order to delineate the use of the MB
vs. MF values at each 1st-stage decision, we added additional parameters to the original drift rate and the starting-point
bias reflecting the trial-by-trial variation in these quantities, according to the following specification:

v = v0 + vMBδ(QMB) + vMF δ(QMF ) + vintδ(QMB)δ(QMF ) (1)

z = z0 + zMBδ(QMB) + zMF δ(QMF ) + zintδ(QMB)δ(QMF ) (2)

, where δ(QMB) and δ(QMF ) stand for the MB or MF Q-value differences of the two first-stage options, respectively.
In our RLDDM, the decision threshold (a) was fixed to 1 for a straightforward interpretation of v and z, and a sigmoid
function was applied to z so that the starting point was bounded to [0, 1]. The model was fitted to the data via the HDDM
package [10], where each SSC was estimated by 5 chains of 15,000 samples with 2,000 burn-in samples.

In line with the overall RT, the 1st-stage NDT significantly increased as a function of SSC (F(3,412) = 14.03, p < .001; mean
tSSC−2 = .34 s, mean tSSC−3 = .4 s, mean tSSC−4 = .39 s, mean tSSC−5 = .43 s; Figure 3a), while the 2nd-stage NDT
did not differ among conditions (Figure 3b). This may reflect that in order to plan online in higher SSC environments,
participants must spend a longer time identifying the options present on the screen (ostensibly to establish the current
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(a) Posterior distribution of first-
stage NDT (t)

(b) Posterior distribution of
second-stage NDT (t) (c) Posterior distribution of vMB (d) Posterior distribution of zMB

Figure 3: Posterior distribution of parameters estimated from RLDDM. For each SSC, the RLDDM model was estimated
via HDDM on 5 chains that iterated for 15,000 samples, of which 2,000 were burn-in samples. The results show
distribution of samples concatenated from all 5 chains. (a-b) The unit for NDT (t) is seconds.

Figure 4: The distribution of the online planning index (OPI), defined by the ratio of vMB to zMB . (First row) The
histogram of OPI for each condition. (Second row) A stem plot of OPI for each condition, with OPI=1 as the baseline.

decision tree) at each trial, which would have been unnecessary for the original TST. Importantly, after accounting for
this condition-wise shift in RT using the NDT parameter, we examined how trial-varying MB and MF values affected
both the starting point (z) and drift rate (v) differentially in each condition. Supporting the hypothesis that participants’
dependency on using online, relative to offline, planning should increase as a function of SSC, we found a significant
increase of vMB and decrease of zMB as a function of SSC through one-way ANOVA (F(3,412) = 2373.11, p < .001; Figure
3c; F(3,412) = 55.18, p < .001; Figure 3d). Post-hoc pairwise t-tests revealed that while all distributions of vMB were
significantly different among SSC (all p < .001), all pairs but SSC-4 vs. SSC-5 were significantly different for zMB (rest
p < .001).

Next, we examined whether online and offline planning traded off within each subject. Specifically, we calculated an
online planning index (OPI), given by OPI = (1− zMB)/(1− vMB). The first and second row of Figure 4 show that as SSC
increases, so does the proportion of subjects adopting online planning (F(3,412) = 140.61, p < .001), where subjects in SSC-
2 and SSC-3 heavily rely on offline planning while the majority of participants in SSC-4 and SSC-5 uses online planning
(OPI = 1 indicates equal use of online and online planning). To determine the extent to which general planning could
be explained by online planning, we correlated w from the choice model and OPI from the RLDDM. Again supporting
the hypothesis that online planning becomes more relevant as SSC increases, only SSC-5 showed a significant correlation
between the two parameters (Pearson’s r = .25, p = .009), indicating that planning in SSC-5 is heavily driven by online
planning. Finally, to examine the tradeoff between online and offline planning over the course of task experience, we
performed a sliding-window RLDDM with a window size of 50 trials to obtain the timeseries of vMB and zMB . We then
correlated the timeseries of vMB and zMB for each subject, and (Figure 5) shows that all SSC yields significant, medium
to strong negative correlations between vMB and zMB . Entering the z-transformed correlation coefficients into pairwise
t-tests against zero yielded significant differences for all conditions (all p < .001).
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Figure 5: The distribution of the correlation coefficient (Pearson’s r) between the timeseries of vMB and zMB for each
subject. The timeseries is generated by applying the RLDDM model to a window of 50 trials, and sliding the start of the
window from the first trial to the 250th trial.

3 Conclusion

The TST framework has been an important method for investigating planning, but a key limitation of this framework is
that it prevents evaluating the online deliberation process directly in behavior. Here, we introduce a multinomial TST
which sets aside this limitation, and across four experiments, demonstrate that response time patterns reflect a sensitivity
to both each task’s differing state complexity and also trial-wise learned values. The preliminary results reported here
suggest that our novel multinomial TST can provide a useful foundation for investigating online planning patterns in
humans. Importantly, we have shown that although plans could be made in advance in simplistic environments, this
is gradually hampered with complexity and thus recruits decision-time planning. This trade-off relationship between
online and offline planning is observed across both SSC and experience within the task. Together with this trade-off,
the correlation between OPI and w in the most complex environment may provide an explanation for the invariant
general planning (w) across contexts, also shown in previous studies [7]. Also, OPI, which directly compares the
relationship between the two planning mechanisms, could be used as a new individual-difference measure with potential
clinical relevance. We also anticipate that bringing this decision-time activity under behavioral control and experimental
manipulation will allow us to interrogate the algorithmic structure of model-based decisions, to understand the balance
between online and offline control in humans performing novel tasks, and will allow for evaluating online deliberation
activity using neuroimaging measures.
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